9 research outputs found

    Butterfly Counting in Bipartite Networks

    Full text link
    We consider the problem of counting motifs in bipartite affiliation networks, such as author-paper, user-product, and actor-movie relations. We focus on counting the number of occurrences of a "butterfly", a complete 2×22 \times 2 biclique, the simplest cohesive higher-order structure in a bipartite graph. Our main contribution is a suite of randomized algorithms that can quickly approximate the number of butterflies in a graph with a provable guarantee on accuracy. An experimental evaluation on large real-world networks shows that our algorithms return accurate estimates within a few seconds, even for networks with trillions of butterflies and hundreds of millions of edges.Comment: 28 pages, 5 tables, 6 figure

    Graph manipulations for fast centrality computation

    Get PDF
    The betweenness and closeness metrics have always been intriguing and used in many analyses. Yet, they are expensive to compute. For that reason, making the betweenness and closeness centrality computations faster is an important and well-studied problem. In this work, we propose the framework, BADIOS, which manipulates the graph by compressing it and splitting into pieces so that the centrality computation can be handled independently for each piece. Although BADIOS is designed and fine-tuned for exact betweenness and closeness centrality, it can easily be adapted for approximate solutions as well. Experimental results show that the proposed techniques can be a great arsenal to reduce the centrality computation time for various types and sizes of networks. In particular, it reduces the betweenness centrality computation time of a 4.6 million edges graph from more than 5 days to less than 16 hours. For the same graph, we achieve to decrease the closeness computation time from more than 3 days to 6 hours (12.7x speedup)

    Finding the Hierarchy of Dense Subgraphs using Nucleus Decompositions

    Full text link
    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to find the "true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine relationships among them. Current dense subgraph finding algorithms usually optimize some objective, and only find a few such subgraphs without providing any structural relations. We define the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which enables discovering overlapping dense subgraphs. With the right parameters, the nucleus decomposition generalizes the classic notions of k-cores and k-truss decompositions. We give provably efficient algorithms for nucleus decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-the-art solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour

    Incremental closeness centrality in distributed memory

    Get PDF
    Networks are commonly used to model traffic patterns, social interactions, or web pages. The vertices in a network do not possess the same characteristics: some vertices are naturally more connected and some vertices can be more important. Closeness centrality (CC) is a global metric that quantifies how important is a given vertex in the network. When the network is dynamic and keeps changing, the relative importance of the vertices also changes. The best known algorithm to compute the CC scores makes it impractical to recompute them from scratch after each modification. In this paper, we propose Streamer, a distributed memory framework for incrementally maintaining the closeness centrality scores of a network upon changes. It leverages pipelined, replicated parallelism, and SpMM-based BFSs, and it takes NUMA effects into account. It makes maintaining the Closeness Centrality values of real-life networks with millions of interactions significantly faster and obtains almost linear speedups on a 64 nodes 8 threads/node cluster

    Fast Algorithms for Large-Scale Network Analytics

    No full text

    Butterfly Counting in Bipartite Networks

    No full text
    We consider the problem of counting motifs in bipartite affiliation networks, such as author-paper, user-product, and actor-movie relations. We focus on counting the number of occurrences of a "butterfly", a complete 2x2 biclique, the simplest cohesive higher-order structure in a bipartite graph. Our main contribution is a suite of randomized algorithms that can quickly approximate the number of butterflies in a graph with a provable guarantee on accuracy. An experimental evaluation on large real-world networks shows that our algorithms return accurate estimates within a few seconds, even for networks with trillions of butterflies and hundreds of millions of edges.This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published as: Sanei-Mehri, Seyed-Vahid, Ahmet Erdem Sariyuce, and Srikanta Tirthapura. "Butterfly counting in bipartite networks." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2150-2159. 2018. DOI: 10.1145/3219819.3220097. Copyright 2018 Association for Computing Machinery. Posted with permission
    corecore